160 COMPUTE!

Ccloper 1981, issue 17

WRELRES,
SRR

X5

AIM 65 BASIC

Floating-Point
Arithmetic
From Machine
Language

Paul Becsley.
Mobile, Al

Writing floating-point operations in machine lan-

uage on a microprocessor is a “‘messy” proposition.
g nict o] i

I avoud it like the plague unless T absolutely must

do it But I have discovered how 1o usc the floating-

point routines in the ATM 65 BASIC ROM's. It's so
easy even 1 do not mind floating-point applications
any more.

AIM 65 BASIC Floating-Point Numbers

For those who are unfamiliar with floaring-point
numbers, particularly on the AIM 63, I'll describe
the floating-point number format. Floating-point
representations are similar to scientific notation.
An example of a number written in normalized,
scientific notation is .27 x 107 (= 27). Computers
commonly use a similar scheme except instead of
10 as a base. the base 2 is used (e.g.. 27= 84375
x27). By storing the sign, the exponent of 2, and
the mantissa of the number, a broad range of
values can be efficiently represented. In the AIM
65, this is accomplished by storing each loating-
point number in [ive consecutive bytes as tollows:

1 2 3 4 5 E=cxponent
[E [M3[M2[MI]MO] M3M2MIMO=mantissa
S=bit7 S=sign

Note: Bits in a byte are numbered 0 (LSB) to 7 (MSB).

The exponent, K, is a power of 2 and is biased so

that E =380 acrually corresponds 1o a power of 0,
E=%7F corresponds 1o -1, E= 8§81 corresponds to
+ 1, ete. When a loating-point number is normal-
ized, the mantissa is shifted so that the first 1 bit ol
the mantissa falls in bit position 7 of M3. This
means that bit 7 of M3 will always be 1 and the
exponent reflects the number of bits that the man-
tissa was shifted in order to have the implied decimal
in front of the first 1 bit. E =$80 means no shifts
were required; E=$81 means the mantissa was
shifted right one bit; E=$7F means the mantissa
was shifted left one bit; ete.

Since bit 7 of M3 is always [using the above
method, itis stripped off and restored only when
performing arithmetic operations (this process is
cxplained later). So, when a number is stored in
memory, this bit position is used o store the sign
of the number — 0 for positive and 1 for negative.
(Incidentally, the floating-point representation of
O is all five bytes equal $00.) My previous example
of the number 27 would be stored in memory as [ol-
lows:

85 58 60 00 00

AIM 65 BASIC Floating-Point Accumulators
Inorder to use loating-point numbers in arithmetic
operations, BASIC reserves twelve bytes in Page 0
1o provide two floating-point accumulators. Ac-
cumulator 1 {FPACT) is in locations $AY through
$AE and accumulator 2 (FPAC2) is in locations
EB1 through $B6. Each accumulator spans six
bytes ind has the following fornat:

1 2 3 4 5 [

L S= $00for +
[E M M. [M M]s]

$FF for -

As I mentioned earlier, when numbers are stored
into memory, the sign is put into bit 7 of M3. Tech-
nically, this is accomplished as follows:

M3 A $7F) {8 /\ $80) V' denateslogical OR
P l"i"’ A\ denoteslogical AND
strips of f strips off
mostsignificant all bits except
bitof M3 leftmost bit

162

COMPUTE!

Tctobrer, 1081 Issua 17

Table 1. Calling sequences for floating-point operations.

OPERATION
1. Load FPAC1

2. Load FPAC2

3. Store FPACI1

4. Copy FPAC1 to FPAC2

5. Copy FPAC2 10 FPACI1

6. Convert fixed-pointto
floating-point

7. Convert floating-point
to fixed-point

8. Addition

10. Multiplication

11. Division

12. Power operau‘ou

13. Mulr.iply FPACI by 10;
14. Divide FPAC1 by 10
15. Add.5t0 FPACI1

16, Convert floating-point
number to ASCII string

CALLING SEQUENCE
LDA AL
LDY AH source address
JSR $CBEX
LDA AL
IDY AH source address
JSR $C7CB
LDX AL destinati
LDY AH ;:lln‘atmn
JSR $C913 Adddress
ISR $C94B
JSR $C93B
LDY IL
LDA IH
(resultin FPAC1)

Load FPACI with floating-point value
JSR $C536

(result right-justified in
M3-MOcfFPACL

Load FPAC1 withoperand 1

LDA AL source address
LDY AH for minuend
JSR $C58F

(Addressed value is loaded into FPAC2,
FPACI is subtracted from FPAC2 and
resultin FPAC1; FPAC2 unchanged.)

Load FPAC]1 with operand 1

Load FPAC2 with operand 2

JSR $C76F

(result in FPAC1; FPAC2 unchanged.)
Load FPAC1 with divisor

Load FPAC2 with dividend

JSR scasi

(resultin FPAC1; FPAC2 unchanged.)
Load FPACI with exponent

Load FPAC2 with base number

JSR $CCTF

(FPACZ2is raised to the powerin FPACL;
resultin FPAC1; FPAC2 unchanged.)
JSR $C821

JSR $C83D

JSR $C588

Load FPAC1 with number

JSR $CBIC

(result at $0200)

Table 2. Intrinsic Function Subroutine Addresses

Basic
Function
ABS
COS
EXP
INT
LOG
NEG
RND
SGN
SIN
SOR
TAN

Note: Resulting ASCII string starts at location $0200. The first character is a
space, followed by the ASCII digits and ended with a $00 byte.

17. Compare FPAC1 to memory

Branch to xxxx if:
memory <FPACI
memory = FPACI

memory? FPAC1

LDA AL source address of
LDY AH number in memory
JSR $C99A

BCC xxxx

BEQ xxxx

BEQ LABEL

BCS xxxx

LABEL

Address Description

$C997 Absolute Value of FPACI
$CDD2 Cosine of FPAC1

$CCF1 Raises e to powerin FPAC1
$CAOB Integer portion of FPAC1
$C729 Natural logarithm of FPAC1
$CCB38 Negation of FPAC1

$CD96 Generates random number
$C978 Sign function of FPAC1
$CDDI Sine of FPAC1

$CC75 Square root of FPACE
$CE22 Tangentof FPACL

The logical OR places the sign bit
into M3.

When a number is loaded
into one of the accumulators, the
sign bit is separated out and made
the sixth byte of the accumulator
(as shown above) so that bit 7 of
M3 can be restored to 1. This
makes arithmetic operations
easier and explains why the ac-
cumulators are six bytes each. My
example of the number 27 would
appear in an accumulator as:

85 D8 00 00 00 00

In addition to the accumula-
tors, there are two other bytes in
Page 0 that you should know
about. These are the overflow (at
$B0) and underflow (at $B8)
bytes. The underflow byte is used
for rounding MO of FPACI. The
overflow byte becomes non-zero
when a computational result
becomes too large. It is important
that these two bytes be iniualized
to zero before the first floating-
point operation is performed. In
relation to this, I must give a word
of caution. The BASIC floating-
point routines still “think™ they
are operating in the context of a
BASIC program. This means that
any computation error (e.g.,
overflow) which is normally
trapped by BASIC will still be
caught and your program termi-
nated. The termination message
may look peculiar since the BASIC
statement and variable pointers in
Page 0 probably contain meaning-
less values.

Performing The Floating-Point
Operations
I have prepared Table 1 as a

184

COMPUTE!

reference for the fundamental
floating-point operations along
with their appropriate machine
language calling sequences. All
operations are executed with the
subroutine jump mstruction (JSR)
plus minimal parameter set-up.
In preparing the table I used the
following notation:

AL~ Address Low; the least
significant 8 bits
of the source or destination
memory address.
AH - Address High: the most
significant 8
bits of the source or destination
memory
address.
IL = Tnteger Low; the memory
address of the least significant 8
bits ol a 2-byte integer value.
IH - Integer High; the memory
address of the most significant 8
bits of a 2-byte integer value.
FPACI — Floating Point Accumu-
lator 1.
FPAC2 - Floating Point Accumu-
lator 2.
[n addition 1o the fundamental
operations in Table 1, the BASIC
intrinsic functions may also be
used. The common calling
sequence for these functions is as
follows:

load FPAC! with the argument

value

ISR $xxxx (select function

address from Table 2)

(result in FPACI)
The entry point address lor cach
of the functions is given in Table 2.

Sample Program

In order to illustrate what I have
just described, T have included
the following sample program. It
is a very simple calculation of the
volume of a cylinder using the
formula V = 7 r*h, wherer =
radius and h = height. I know
that ¥ can be computed as r times
r very efficiently, but T used the
power function to illustrate its
usc. When the program finishes
(successtully), it will display V =
88357.2035. Another tidbit 'l
point out is that the floating-point
rc])n_-svn[:lliun for? « IS at](JL‘ll-
ton $CEMS of the BASIC ROM's.

Sample Program: Calculate Volume of Cylinder (V= 7 r’h)

*=$§0220

COMIN =3$RI1A1
EQUAL =SE7D8
OUTPUT =$E97A
CRLOW=8§EA13
FMUL=$C76F
CONVIF=3C0D1
CONVFA =§CB1C

FSTE=$C913

FLD2 = $C7CB

CPY12=$C94B

FDIV = §C851

FPWR =$CC7F

PI2=$CE53

START LDY R
LDA #0
STA $B8
STA $BO
JSR CONVIF
LDX #<TEMP
LDY #>TEMP
JSR FST1
LDY #2
LDA #0
JSR CONVIF
LDA #<TEMP
LDY #*TEMP
JSR FLD2
JSR FPWR
LDX #<TEMP
LDY # TEMP
JSR FSTL
LDY H
LDA #0
JSR CONVIF
LDA #<TEMP
LDY # TEMP
JSR FLD2
ISR FMUL
LDA #<PI2
LDY #PI2
JSR FLD2
JSR FMUL
JSR CPYIZ
LDY #2
LDA #0
JSR CONVIF
JSR FDIV
JSR CONVFA
ISR CRLOW
LDA #V’
JSR OUTPUT
JSR EQUAL
LDX #0

LABELL LDA $0200,X
BEQ LABEL2
JSR OUTPUT
INX
JMP LABELI

LABELZ JSR CRLOW
JMP COMIN

R .BYTE 25

H .BYTE 45

TEMP .BYTE 0,0,0,0,0
.END

e R B B GEe R T

H

monitor entry for command input
output “* =" to display/priater
output char. in A to diaplay/printer
output CR & LF ta display/printer
floating-point multiply
convert fixed-point to floating-peint
convert floating-point to ASCII string
store FPACI1
load FPAC2
copy FPAC1 to FPAC2
division
power operation

*

getradius

initialize underflow
and overflow bytes

store R in TEMP
exponent 2in FPACI

load Rin FPAC2
raise R to power 2

store R squared in TEMP
height HinFPAC1

load FPAC2 with R squared
FPAC! =H times R squared

load 2* innto FPAC2
FPAC 1 =H times R squared times 2
save FPAC1 in FPAC2

FPAC1 =2
divideby 2
resulting volume in FPAC1

display 'V’
display ‘="

fetch & display ASCII digits

radius=25
height=45

